天天影视综合久久|制服丝袜在线精品|av大片无码专区|狠狠爱丁香色五月|高潮舒服亚洲国产|日韩精品一区三区|天天干视频爱爱视频毛片|av导航在线大全|日韩人妻一级毛片|性调教视频网站入口

A note on Marino-Vafa formula

時(shí)間:2023-04-29 22:32:00 數(shù)理化學(xué)論文 我要投稿
  • 相關(guān)推薦

A note on Marino-Vafa formula

Hodge integrals over moduli spaces of curves appear naturally during the localization procedure in computation of Gromov-Witten invariants. A remarkable formula of Marino-Vafa expresses a generation function of Hodge integrals via some combinatorial and algebraic data seemingly unrelated to these apriori algebraic geometric objects. We prove in this paper by directly expanding the formula and estimating the involved terms carefully that except a specific type all the other Hodge integrals involving up to three Hodge classes can be calculated from this formula. This implies that amazingly rich information about moduli spaces and Gromov-Witten invariants is encoded in this complicated formula. We also give some low genus examples which agree with the previous results in literature. Proofs and calculations are elementary as long as one accepts Mumford relations on the reductions of products of Hodge classes.

作 者: LU Wenxuan   作者單位: Department of Mathematics, Tsinghua University, Beijing 100084, China  刊 名: 中國(guó)科學(xué)A輯(英文版)  SCI 英文刊名: SCIENCE IN CHINA (MATHEMATICS)  年,卷(期): 2006 49(1)  分類號(hào): O1  關(guān)鍵詞: Hodge integrals   Gromov-Witten invariants   Marino-Vafa formula   Mumford relations  

【A note on Marino-Vafa formula】相關(guān)文章:

Density-functional formula for strongly correlated systems04-26

Twenty-word formula (英語寫作20字訣)05-04

A NOTE ON THE MEAN CURVATURE FLOW IN RIEMANNIAN MANIFOLDS04-26